Given a positive integer $n\ge 3$, Arándano and Banana play a game. Initially, numbers $1,2,3,\dots,n$ are written on the blackboard. Alternatingly and starting with Arándano, the players erase numbers from the board one at a time, until exactly three numbers remain on the board. Banana wins the game if the last three numbers on the board are the sides of a nondegenerate triangle, and Arándano wins otherwise. Determine, in terms of $n$, who has a winning strategy.