Let $ABC$ be a triangle, and let $D$ and $E$ be two points on side $BC$ such that $BD = EC$. Let $X$ be a point on segment $AD$ such that $CX$ is parallel to the bisector of $\angle ADB$. Similarly, let $Y$ be a point on segment $AD$ such that $BY$ is parallel to the bisector of $\angle ADC$. Prove that $DE = XY$.