The country OMEC is divided in $5$ regions, each region is divided in $5$ districts, and, in each district, $1001$ people vote. Each person choose between $A$ or $B$. In a district, a candidate's letter wins if it's the letter with the most votes. In a region, a candidate's letter wins if it won in most districts. A candidate is the new president of OMEC if the candidate won in most regions. The candidate $A$ can rearrange the people of each district in each region (for example, A moves someone in District M to District N in region 1), but he can't change them to a different region. Find the minimum number of votes that the candidate $A$ needs to become the new president.
Problem
Source: OMEC Ecuador National Olympiad Final Round 2020 N3 P1 day 1
Tags: combinatorics, national olympiad