Problem

Source: KMO 2024 P2

Tags: algebra



For a sequence of positive integers $\{x_n\}$ where $x_1 = 2$ and $x_{n + 1} - x_n \in \{0, 3\}$ for all positve integers $n$, then $\{x_n\}$ is called a "frog sequence". Find all real numbers $d$ that satisfy the following condition. (Condition) For two frog sequence $\{a_n\}, \{b_n\}$, if there exists a positive integer $n$ such that $a_n = 1000b_n$, then there exists a positive integer $m$ such that $a_m = d\cdot b_m$.