Problem

Source: OMEC Ecuador National Olympiad Final Round 2023 N3 P3 day 1

Tags: algebra, polynomial



We define a sequence of numbers $a_n$ such that $a_0=1$ and for all $n\ge0$: \[2a_{n+1} ^3 + 2a_n ^3 = 3 a_{n +1} ^2 a_n + 3a_{n+1}a_n^2\]Find the sum of all $a_{2023}$'s possible values.