Find all reals $(a, b, c)$ such that $$\begin{cases}a^2+b^2+c^2=1\\ |a+b|=\sqrt{2}\end{cases}$$
Problem
Source: OMEC Ecuador National Olympiad Final Round 2023 N3 P1 day 1
Tags: absolute value, algebra
Source: OMEC Ecuador National Olympiad Final Round 2023 N3 P1 day 1
Tags: absolute value, algebra
Find all reals $(a, b, c)$ such that $$\begin{cases}a^2+b^2+c^2=1\\ |a+b|=\sqrt{2}\end{cases}$$