Prove that for all prime $p \ge 5$, there exist an odd prime $q \not= p$ such that $q$ divides $(p-1)^p + 1$
Problem
Source: OMEC Ecuador National Olympiad Final Round 2022 N3 P6 day 2
Tags: number theory, primes, national olympiad
Source: OMEC Ecuador National Olympiad Final Round 2022 N3 P6 day 2
Tags: number theory, primes, national olympiad
Prove that for all prime $p \ge 5$, there exist an odd prime $q \not= p$ such that $q$ divides $(p-1)^p + 1$