Problem

Source:

Tags: combinatorics, Chile



Emilia and Julieta have a pile of 2024 cards and play the following game: they take turns, and each player removes a number of cards that must be a power of two, i.e., \(1, 2, 4, 8, \dots\). The player who removes the last card wins. Julieta starts the game. Prove that there exists a strategy for Julieta that guarantees her victory, no matter how Emilia plays.