Let $S=x+y$ and $P=xy$.
Taking the sum and product of the two equations and simplifying gives:
$\begin{cases}
x^2+x+y^2+y=0\\
x^3y^2+x^2y^3+x^3y+x^2y^2+xy^3+x^2y+xy^2+x^2+xy+y^2+x+y=0\\
\end{cases}$
Using Newton's identities gives:
$\begin{cases}
S^2-2P+S=0\\
P^2S+PS^2-P^2+PS+S^2-P+S=0\\
\end{cases}$
The first equation becomes $P=\frac{S^2+S}{2}$, and substitution gives $4(S^2+S)^2S+2(S^2+S)S^2-(S^2+S)^2+2(S^2+S)S+4S^2-2(S^2+S)+4S=0$.
Expand and simplify to get $S^5+3S^4+3S^3+3S^2+2S=0$. Factor to get $S(S+1)(S+2)(S^2+1)=0$.
This means $(S,P)\in\left\{(0,0),(-1,0),(-2,1),\left(\pm i,\frac{-1\pm i}{2}\right)\right\}$
The solution to the original system is then the following after discarding extraneous cases.
Real:
$(0,0)$, $(-1,-1)$
Complex:
$(A_+,B_+)$, $(A_-,B_-)$, $(B_+,A_+)$, $(B_-,A_-)$
$A_\pm=-\frac{\sqrt{2+2\sqrt{5}}}{4}\pm\left(\frac{1}{2}+\frac{\sqrt{-2+2\sqrt{5}}}{4}\right)i$
$B_\pm=\frac{\sqrt{2+2\sqrt{5}}}{4}\pm\left(\frac{1}{2}-\frac{\sqrt{-2+2\sqrt{5}}}{4}\right)i$