Problem

Source: Brazil Cono Sur TST 2024 - T1/P2

Tags: geometry



Let $ABC$ be a triangle with $AB < AC < BC$ and $\Gamma$ its circumcircle. Let $\omega_1$ be the circle with center $B$ and radius $AC$ and $\omega_2$ the circle with center $C$ and radius $AB$. The circles $\omega_1$ and $\omega_2$ intersect at point $E$ such that $A$ and $E$ are on opposite sides of the line $BC$. The circles $\Gamma$ and $\omega_1$ intersect at point $F$ and the circles $\Gamma$ and $\omega_2$ intersect at point $G$ such that the points $F$ and $G$ are on the same side as $E$ in relation to the line $BC$. With $K$ being the point such that $AK$ is a diameter of $\Gamma$, prove that $K$ is circumcenter of triangle $EFG$.