There are $15$ boys and $15$ girls in the class. The first girl is friends with $4$ boys, the second with $5$, the third with $6$, . . . , the $11$th with $14$, and each of the other four girls is friends with all the boys. It turned out that there are exactly $3 \cdot 2^{25}$ ways to split the entire class into pairs, so that each pair has a boy and a girl who are friends. Prove that any of the friends of the first girl are friends with all the other girls too. G.M.Sharafetdinova