A parabola $p$ is drawn on the coordinate plane — the graph of the equation $y =-x^2$, and a point $A$ is marked that does not lie on the parabola $p$. All possible parabolas $q$ of the form $y = x^2+ax+b$ are drawn through point $A$, intersecting $p$ at two points $X$ and $Y$ . Prove that all possible $XY$ lines pass through a fixed point in the plane. P.A.Kozhevnikov