Problem

Source: Assara 2024 J3

Tags: combinatorics, abstract algebra



In the cells of the $4\times N$ table, integers are written, modulo no more than $2024$ (i.e. numbers from the set $\{-2024, -2023,\dots , -2, -1, 0, 1, 2, 3,\dots , 2024\}$) so that in each of the four lines there are no two equal numbers. At what maximum $N$ could it turn out that in each column the sum of the numbers is equal to $2$? G.M.Sharafetdinova