Decide whether there exists a positive real number \( a < 1 \) such that, for any positive real numbers \( x \) and \( y \), the inequality \[ \frac{2xy^2}{x^2 + y^2} \leq (1 - a)x + ay \]holds true.
Source: Brazil EGMO TST1 2024 #1
Tags: Inequality, algebra, inequalities
Decide whether there exists a positive real number \( a < 1 \) such that, for any positive real numbers \( x \) and \( y \), the inequality \[ \frac{2xy^2}{x^2 + y^2} \leq (1 - a)x + ay \]holds true.