Problem

Source: Saint Petersburg olympiad 2024, 10.6

Tags: geometry, circumcircle



Inscribed hexagon $AB_1CA_1BC_1$ is given. Circle $\omega$ is inscribed in both triangles $ABC$ and $A_1B_1C_1$ and touches segments $AB$ and $A_1B_1$ at points $D$ and $D_1$ respectively. Prove that if $\angle ACD = \angle BCD_1$, then $\angle A_1C_1D_1 = \angle B_1C_1D$.