On the side $BC$ of acute triangle $ABC$ point $P$ was chosen. Point $E$ is symmetric to point $B$ onto line $AP$. Segment $PE$ meets circumcircle of triangle $ABP$ in point $D$. $M$ is midpoint of side $AC$. Prove that $DE+AC>2BM$.
Source: Saint Petersburg olympiad 2024, 10.3
Tags: geometry, circumcircle
On the side $BC$ of acute triangle $ABC$ point $P$ was chosen. Point $E$ is symmetric to point $B$ onto line $AP$. Segment $PE$ meets circumcircle of triangle $ABP$ in point $D$. $M$ is midpoint of side $AC$. Prove that $DE+AC>2BM$.