Problem

Source: Saint Petersburg olympiad 2024, 9.3

Tags: geometry



The triangle $ABC$ is inscribed in a circle. Two ants crawl out of points $B$ and $C$ at the same time. They crawl along the arc $BC$ towards each other so that the product of the distances from them to point $A$ remains unchanged. Prove that during their movement (until the moment of meeting), the straight line passing through the ants touches some fixed circle.