Determine the largest possible value of$ M$ for which it holds that: $$\frac{x}{1 +\dfrac{yz}{x}}+ \frac{y}{1 + \dfrac{zx}{y}}+ \frac{z}{1 + \dfrac{xy}{z}} \ge M,$$for all real numbers $x, y, z > 0$ that satisfy the equation $xy + yz + zx = 1$.
Source: 2015 Cuba 2.9
Tags: algebra, inequalities
Determine the largest possible value of$ M$ for which it holds that: $$\frac{x}{1 +\dfrac{yz}{x}}+ \frac{y}{1 + \dfrac{zx}{y}}+ \frac{z}{1 + \dfrac{xy}{z}} \ge M,$$for all real numbers $x, y, z > 0$ that satisfy the equation $xy + yz + zx = 1$.