If the natural numbers $a, b, c, d$ verify the relationships: $$(a^2 + b^2)(c^2 + d^2) = (ab + cd)^2$$$$(a^2 + d^2)(b^2 + c^2) = (ad + bc)^2$$and the $gcd(a, b, c, d) = 1$, prove that $a + b + c + d$ is a perfect square.
Source: 2012 Cuba MO 2.8
Tags: number theory, Perfect Square
If the natural numbers $a, b, c, d$ verify the relationships: $$(a^2 + b^2)(c^2 + d^2) = (ab + cd)^2$$$$(a^2 + d^2)(b^2 + c^2) = (ad + bc)^2$$and the $gcd(a, b, c, d) = 1$, prove that $a + b + c + d$ is a perfect square.