Problem

Source: 2010 Cuba MO 2.7

Tags: algebra, inequalities



Let $x, y, z$ be positive real numbers such that $xyz = 1$. Prove that: $$\frac{x^3 + y^3}{x^2 + xy + y^2} +\frac{ y^3 + z^3}{y^2 + yz + z^2} + \frac{z^3 + x^3}{z^2 + zx + x^2} \ge 2.$$