Problem

Source: 2011 Cuba MO 1.3

Tags: combinatorics, combinatorial geometry, tiles



We have a board of $ 2011 \times 2011$, divided by lines parallel to the edges into $1 \times 1$ squares. Manuel, Reinaldo and Jorge (at that time order) play to form squares with vertices at the vertices of the grid. The one who forms the last possible square wins, so that its sides do not cut the sides of any unit square. Who can be sure that he will win?