Problem

Source: 2010 Cuba MO 1.3

Tags: combinatorics, Coloring, geometry, rectangle



A rectangle with sides $ n$ and $p$ is divided into $np$ unit squares. Initially there are m unitary squares painted black and the remaining painted white. The following processoccurs repeatedly: if a unit square painted white has at minus two sides in common with squares painted black then Its color also turns black. Find the smallest integer $m$ that satisfies the property: there exists an initial position of $m$ black unit squares such that the entire $ n \times p$ rectangle is painted black when repeat the process a finite number of times.