Determine all triples of positive integers $(x, y, z)$ that satisfy $$x < y < z, \ \ gcd(x, y) = 6, \ \ gcd(y, z) = 10, \ \ gcd(z, x) = 8 \ \ and \ \ lcm(x, y, z) = 2400.$$
Source: 2005 Cuba MO 2.7
Tags: number theory, LCM, GCD, GCD and LCM
Determine all triples of positive integers $(x, y, z)$ that satisfy $$x < y < z, \ \ gcd(x, y) = 6, \ \ gcd(y, z) = 10, \ \ gcd(z, x) = 8 \ \ and \ \ lcm(x, y, z) = 2400.$$