Let $D$ be the midpoint of the base $AB$ of the isosceles and acute angle triangle $ABC$, $E$ is a point on $AB$ and $O$ circumcenter of the triangle $ACE$. Prove that the line that passes through $D$ perpendicular to $DO$, the line that passes through $E$ perpendicular to $BC$ and the line that passes through$ B$ parallel to $AC$, they intersect at a point.