Problem

Source: 2003 Cuba MO 2.8

Tags: algebra, complex numbers, functional equation



Find all the functions $f : C \to R^+$ such that they fulfill simultaneously the following conditions: $$(i) \ \ f(uv) = f(u)f(v) \ \ \forall u, v \in C$$$$(ii) \ \ f(au) = |a | f(u) \ \ \forall a \in R, u \in C$$$$(iii) \ \ f(u) + f(v) \le |u| + |v| \ \ \forall u, v \in C$$