Problem

Source: All-Russian MO 2009 Regional 10.7

Tags: algebra, system of equations



Positive numbers $ x_1, x_2, . . ., x_{2009}$ satisfy the equalities $$x^2_1 - x_1x_2 +x^2_2 =x^2_2 -x_2x_3+x^2_3=x^2_3 -x_3x_4+x^2_4= ...= x^2_{2008}- x_{2008}x_{2009}+x^2_{2009}= x^2_{2009}-x_{2009}x_1+x^2_1$$. Prove that the numbers $ x_1, x_2, . . ., x_{2009}$ are equal.