Problem

Source: 2008 Cuba MO 1.2

Tags: geometry, geometric inequality, hexagon



Let $H$ a regular hexagon and let $P$ a point in the plane of $H$. Let $V(P)$ the sum of the distances from $P$ to the vertices of $H$ and let $L(P)$ the sum of the distances from $P$ to the edges of $H$. a) Find all points $P$ so that $L(P)$ is minimun b) Find all points $P$ so that $V(P)$ is minimun