Problem

Source: CGMO 2024 P7

Tags: inequalities



Let $n$ be a positive integer. If $x_1, x_2, \ldots, x_n \geq 0$, $x_1+x_2+\ldots+x_n=1$ and, assuming $x_{n+1}=x_1$, find the maximal value of $$\sum_{k=1}^n \frac{1+x_k^2+x_k^4}{1+x_{k+1}+x_{k+1}^2+x_{k+1}^3+x_{k+1}^4}.$$