Problem

Source: CGMO 2024 P3

Tags: number theory



Find the smallest real $\lambda$, such that for any positive integers $n, a, b$, such that $n \nmid a+b$, there exists a positive integer $1 \leq k \leq n-1$, satisfying $$\{\frac{ak} {n}\}+\{\frac{bk} {n}\} \leq \lambda.$$