Find all functions $f:\mathbb{R} \to \mathbb{R}$ such that $$(x^2-y^2)f(xy)=xf(x^2y)-yf(xy^2)$$for all real numbers $x, y$.
Source: Argentina IberoAmerican TST 2024 P5
Tags: algebra, functional equation, TST
Find all functions $f:\mathbb{R} \to \mathbb{R}$ such that $$(x^2-y^2)f(xy)=xf(x^2y)-yf(xy^2)$$for all real numbers $x, y$.