Problem

Source: SMO open 2024 Q1

Tags: geometry



In triangle $ABC$, $\angle B=90^\circ$, $AB>BC$, and $P$ is the point such that $BP=BC$ and $\angle APB=90^\circ$, where $P$ and $C$ lie on the same side of $AB$. Let $Q$ be the point on $AB$ such that $AP=AQ$, and let $M$ be the midpoint of $QC$. Prove that the line through $M$ parallel to $AP$ passes through the midpoint of $AB$.