Problem

Source: 2024 IRN-SGP-TWN Friendly Math Competition P6

Tags: game



Let $\alpha, \beta$ be two rational numbers strictly between 0 and 1. Alice and Bob play a game. At the start of the game, Alice chooses a positive integer $n$. Knowing that, Bob then chooses a positive integer $T$. They then do the following for $T$ rounds: at the $i$th round, Bob chooses a set $X_i$ of $n$ positive integers that form a complete residue system modulo $n$. Then Alice chooses a subset $Y_i$ of $X_i$ such that the sum of elements in $Y_i$ is at most $\alpha$ times the sum of elements in $X_i$. After the $T$ rounds, Alice wins if it is possible to pick an integer $s$ between 0 and $n-1$ such that there are at least $\beta T$ positive integers among the elements in $Y_1, Y_2, . . . , Y_T$ (counted with multiplicities) that are equal to $s \pmod n$, and Bob wins otherwise. Find all pairs $(\alpha, \beta)$ of rational numbers strictly between 0 and 1 such that Alice has a winning strategy. Proposed by Hans