Problem

Source: Dutch TST 2024, 1.2

Tags: inequalities, function, functional equation, algebra proposed, algebra, Functional inequality



Find all functions $f:\mathbb{R}_{\ge 0} \to \mathbb{R}$ with \[2x^3zf(z)+yf(y) \ge 3yz^2f(x)\]for all $x,y,z \in \mathbb{R}_{\ge 0}$.