Problem

Source: Dutch TST 2024, 1.1

Tags: number theory, number theory proposed, Divisors, coprime



For a positive integer $n$, let $\alpha(n)$ be the arithmetic mean of the divisors of $n$, and let $\beta(n)$ be the arithmetic mean of the numbers $k \le n$ with $\text{gcd}(k,n)=1$. Determine all positive integers $n$ with $\alpha(n)=\beta(n)$.