Problem

Source: JBMO Shortlist 2023, G4

Tags: JBMO, JBMO Shortlist, geometry



Let $ABCD$ be a cyclic quadrilateral, for which $B$ and $C$ are acute angles. $M$ and $N$ are the projections of the vertex $B$ on the lines $AC$ and $AD$, respectively, $P$ and $T$ are the projections of the vertex $D$ on the lines $AB$ and $AC$ respectively, $Q$ and $S$ are the intersections of the pairs of lines $MN$ and $CD$, and $PT$ and $BC$, respectively. Prove the following statements: a) $NS \parallel PQ \parallel AC$; b) $NP=SQ$; c) $NPQS$ is a rectangle if, and only if, $AC$ is a diamteter of the circumscribed circle of quadrilateral $ABCD$.