Problem

Source: JBMO Shortlist 2023, G1

Tags: JBMO, JBMO Shortlist, geometry



Let $ABC$ be a triangle with circumcentre $O$ and circumcircle $\Omega$. $\Gamma$ is the circle passing through $O,B$ and tangent to $AB$ at $B$. Let $\Gamma$ intersect $\Omega$ a second time at $P \neq B$. The circle passing through $P,C$ and tangent to $AC$ at $C$ intersects with $\Gamma$ at $M$. Prove that $|MP|=|MC|$.