Let $a_1,a_2,a_3,\ldots,a_{250}$ be real numbers such that $a_1=2$ and $$a_{n+1}=a_n+\frac{1}{a_n^2}$$ for every $n=1,2, \ldots, 249$. Let $x$ be the greatest integer which is less than $$\frac{1}{a_1}+\frac{1}{a_2}+\ldots+\frac{1}{a_{250}}$$ How many digits does $x$ have? Proposed by Miroslav Marinov, Bulgaria
Problem
Source: JBMO Shortlist 2023, A7
Tags: Sequence, inequalities, JBMO, JBMO Shortlist, algebra
28.06.2024 11:08
Orestis_Lignos wrote: Let $a_1,a_2,a_3,\ldots,a_{250}$ be real numbers such that $a_1=2$ and $$a_{n+1}=a_n+\frac{1}{a_n^2}$$ for every $n=1,2, \ldots, 249$. Let $x$ be the greatest integer which is less than $$\frac{1}{a_1}+\frac{1}{a_2}+\ldots+\frac{1}{a_{250}}$$ How many digits does $x$ have? Let $S=\sum_{i=1}^{250}\frac 1{a_i}$ 1) $S>10$ $a_n$ is increasing and so $a_n\ge 2$ $\forall n$ and so $a_{n+1}\le a_n+\frac 14$ and so $a_n\le 2+\frac{n-1}4$ $=\frac {n+7}4$ So $S\ge\sum_{n=1}^{250}\frac 4{n+7}\ge\int_1^{251}\frac {4dx}{x+7}$ $=4(\ln 258 -\ln 8)=4\ln\frac{258}8>4\log_432=4\times\frac 52=10$ 2) $S<50$ $a_{n+1}^3=a_n^3+3+\frac 3{a_n^3}+\frac 1{a_n^6}>a_n^3+3$ and so $a_n^3\ge 2^3+3(n-1)=3n+5$ And so $a_n\ge\sqrt[3]{3n+5}$ So $S\le \sum_{n=1}^{250}\frac 1{\sqrt[3]{3n+5}}<\int_0^{250}\frac{dx}{\sqrt[3]{3x+5}}$ $=\frac 12\left[(3x+5)^{\frac 23}\right]_0^{250}$ $=\frac{755^{\frac 23}-5^{\frac 23}}2<\frac{1000^{\frac 23}}2=50$ Hence the answer $\boxed{\lfloor S\rfloor\text{ has two decimal digits}}$
02.07.2024 00:03
My problem. In the current version one does not need super tight estimates with integrals and that is why it is suitable for juniors, reasonably crude estimates and thinking work.