Problem

Source: 2024 RELSMO 7

Tags: algebra, logic



Prove that $\forall n\in\mathbb{Z}^+_0:(\exists b\in\mathbb{Z}^+_0:(\forall m\in\mathbb{Z}^+_0:((\exists x\in\mathbb{Z}^+_0:(x+m = b))\lor(\exists s\in\mathbb{Z}^+_0:(\exists p\in\mathbb{Z}^+_0:((\neg(\exists x\in\mathbb{Z}^+_0:(p+x = 1)))\land(\neg(\exists x\in\mathbb{Z}^+_0:(\exists y\in\mathbb{Z}^+_0:(p = (x+2) \cdot (y+2)))))\land(\exists x\in\mathbb{Z}^+_0:(p = m+x+1))\land(\exists r\in\mathbb{Z}^+_0:((\forall x\in\mathbb{Z}^+_0:(\forall y\in\mathbb{Z}^+_0:((\neg(x \cdot y = r))\lor(x = 1)\lor(\exists z\in\mathbb{Z}^+_0:(x = z \cdot p)))))\land(\exists x\in\mathbb{Z}^+_0:(\exists y\in\mathbb{Z}^+_0:((\exists z\in\mathbb{Z}^+_0:(r = y+z+1))\land(s = r \cdot (p \cdot x + m) + y))))))\land(\forall u\in\mathbb{Z}^+_0:((\exists x\in\mathbb{Z}^+_0:(u = p+x))\lor(u = 0)\lor(u = n+1)\lor(\neg(\exists r\in\mathbb{Z}^+_0:((\forall x\in\mathbb{Z}^+_0:(\forall y\in\mathbb{Z}^+_0:((\neg(x \cdot y = r))\lor(x = 1)\lor(\exists z\in\mathbb{Z}^+_0:(x = z \cdot p)))))\land(\exists x\in\mathbb{Z}^+_0:(\exists y\in\mathbb{Z}^+_0:((\exists z\in\mathbb{Z}^+_0:(r = y+z+1))\land(s = r \cdot (p \cdot x + u) + y)))))))\lor(\exists v\in\mathbb{Z}^+_0:(\exists k\in\mathbb{Z}^+_0:((\neg(v = 0))\land((u = v \cdot (k+2))\lor(u = v \cdot (k+2) + 1))\land(\exists r\in\mathbb{Z}^+_0:((\forall x\in\mathbb{Z}^+_0:(\forall y\in\mathbb{Z}^+_0:((\neg(x \cdot y = r))\lor(x = 1)\lor(\exists z\in\mathbb{Z}^+_0:(x = z \cdot p)))))\land(\exists x\in\mathbb{Z}^+_0:(\exists y\in\mathbb{Z}^+_0:((\exists z\in\mathbb{Z}^+_0:(r = y+z+1))\land(s = r \cdot (p \cdot x + v) + y)))))))))))))))))$. Proposed by Warren Bei