Bob and Cob are playing a game on an infinite grid of hexagons. On Bob's turn, he chooses one hexagon that has not yet been chosen, and draws a segment from the center of the hexagon to the midpoints of three of its sides. On Cob's turn, he erases one of Bob's edges made on the previous turn. Bob wins if his edges form a closed loop. Can Bob guarantee to win in a finite amount of time? (Note that Bob may win before Cob can play his next turn.) Proposed by Jonathan He