Prove that for all $n \ge 3$ there are an infinite number of $n$-sided polygonal numbers which are also the sum of two other (not necessarily different) $n$-sided polygonal numbers! The first $n$-sided polygonal number is $1$. The kth n-sided polygonal number for $k \ge 2$ is the number of different points in a figure that consists of all of the regular $n$-sided polygons which have one common vertex, are oriented in the same direction from that vertex and their sides are $\ell$ cm long where $1 \le \ell \le k - 1$ cm and $\ell$ is an integer. In this figure, what we call points are the vertices of the polygons and the points that break up the sides of the polygons into exactly $1$ cm long segments. For example, the first four pentagonal numbers are 1,5,12, and 22, like it is shown in the figure.
Problem
Source: (2022 -) 2023 XVI Dürer Math Competition Finals Day 1 E4
Tags: combinatorics, combinatorial geometry, number theory