Problem

Source: (2022 -) 2023 XVI Dürer Math Competition Regional E+1

Tags: algebra, inequalities, floor function



Find all positive integers $n$ such that $$\lfloor \sqrt{n} \rfloor + \left\lfloor \frac{n}{\lfloor \sqrt{n} \rfloor} \right \rfloor> 2\sqrt{n}.$$If $k$ is a real number, then $\lfloor k \rfloor$ means the floor of $k$, this is the greatest integer less than or equal to $k$.