let $n = m^2+k$ where as $ 0 \leq k \leq 2m $
thus $\lfloor{\sqrt{n}}\rfloor = m$
$m+\lfloor{\frac{m^2+k}{m}}\rfloor> 2\sqrt{m^2+k}$
$2m+\lfloor{\frac{k}{m}}\rfloor>2\sqrt{m^2+k}$
First Case : $\lfloor { \frac{k}{m}}\rfloor = 0$
$2m > 2\sqrt{m^2+k}$
$m^2>m^2+k$ implies $k <0$ however $k \geq 0$ so no such n
Second Case: if $\lfloor {\frac{k}{m}\rfloor} = 1$
$2m+1 > 2\sqrt{m^2+k}$
$4m^2+4m+1 >4(m^2+k)$
$4m^2+4m+1>4m^2+4k$
$4m+1>4k$
$k< \frac{4m+1}{4}=m+\frac{1}{4}$
$k \leq m$
but since $\lfloor{\frac{k}{m}}\rfloor=1$ implies $k \geq m$
so $n = m^2+m$
Second Case : if $\lfloor{\frac{k}{m}}\rfloor = 2$
$k = 2m$
$2m+2 > 2 \sqrt{m^2+2m}$
$4m^2+8m+4 >4(m^2+2m)$
$4>0$
this is true, then $n = m^2+2m$ also satisfy
so n that could be formed in term of $(m^2+m , m^2+2m)$ where m natural number is the solution of the equation
Edit : I forgot to put sqrt