Problem

Source: 2023 Peru MO (ONEM) L3 p3 - finals

Tags: geometry, combinatorics, combinatorial geometry



Prove that, for every integer $n \ge 2$, it is possible to divide a regular hexagon into $n$ quadrilaterals such that any two of them are similar. Clarification: Two quadrilaterals are similar if they have their corresponding sides proportional and their corresponding angles are equal, that is, the quadrilaterals $ABCD$ and $EFGH$ are similar if $\frac{AB}{EF}= \frac{BC}{FG}= \frac{CD}{GH} = \frac{DA}{HE}$, $\angle ABC = \angle EFG$, $\angle BCD = \angle FGH$, $\angle CDA = \angle GHE$ and $\angle DAB = \angle HEF$.