Problem

Source: Thailand MO 2024 Day 2 P7

Tags: algebra



Let $m$ and $n$ be positive integers for which $n\leq m\leq 2n$. Find the number of all complex solutions $(z_1,z_2,...,z_m)$ that satisfy $$z_1^7+z_2^7+...+z_m^7=n$$Such that $z_k^3-2z_k^2+2z_k-1=0$ for all $k=1,2,...,m$.