Problem

Source: Thailand MO 2024 Day 1 P3

Tags: Functional Equations, function, algebra



Let $c$ be a positive real number. Find all functions $f:\mathbb{R}^+\to\mathbb{R}^+$ that satisfy $$x^2f(xf(y))f(x)f(y)=c$$for all positive reals $x$ and $y$.