In triangle $ABC$, the points $M$ and $N$ are the midpoints of the sides $AB$ and $AC$, respectively. The bisectors of interior angles $\angle ABC$ and $\angle BCA$ intersect the line $MN$ at points $P$ and $Q$, respectively. Let $p$ be the tangent to the circumscribed circle of the triangle $AMP$ passing through point $P$, and $q$ be the tangent to the circumscribed circle of the triangle $ANQ$ passing through point $Q$. Prove that the lines $p$ and $q$ intersect on line $BC$.