Problem

Source: Own. Malaysian IMO TST 2024 P6

Tags: geometry



Let $\omega_1$, $\omega_2$, $\omega_3$ are three externally tangent circles, with $\omega_1$ and $\omega_2$ tangent at $A$. Choose points $B$ and $C$ on $\omega_1$ so that lines $AB$ and $AC$ are tangent to $\omega_3$. Suppose the line $BC$ intersect $\omega_3$ at two distinct points, and $X$ is the intersection further away to $B$ and $C$ than the other one. Prove that one of the tangent lines of $\omega_2$ passing through $X$, is also tangent to an excircle of triangle $ABC$. Proposed by Ivan Chan Kai Chin