Problem

Source: Malaysian IMO TST 2024 P5

Tags: number theory



Let $n$ be an odd integer and $m=\phi(n)$ be the Euler's totient function. Call a set of residues $T=\{a_1, \cdots, a_k\} \pmod n$ to be good if $\gcd(a_i, n) > 1$ $\forall i$, and $\gcd(a_i, a_j) = 1, \forall i \neq j$. Define the set $S_n$ consisting of the residues $$\sum_{i=1}^k a_i ^m\pmod{n}$$over all possible residue sets $T=\{a_1,\cdots,a_k\}$ that is good. Determine $|S_n|$. Proposed by Anzo Teh Zhao Yang