Problem

Source: Own. Malaysian IMO TST 2024 P2

Tags: algebra



Let $k$ be a positive integer. Find all collection of integers $(a_1, a_2,\cdots, a_k)$ such that there exist a non-linear polynomial $P$ with integer coefficients, so that for all positive integers $n$ there exist a positive integer $m$ satisfying: $$P(n+a_1)+P(n+a_2)+...+P(n+a_k)=P(m)$$ Proposed by Ivan Chan Kai Chin