Problem

Source: Own. Malaysian IMO TST 2024 P1

Tags: geometry



Let $ABC$ be an acute triangle with orthocenter $H$, and let $BE$ and $CF$ be the altitudes of the triangle. Choose two points $P$ and $Q$ on rays $BH$ and $CH$ respectively, such that: $\bullet$ $PQ$ is parallel to $BC$; $\bullet$ The quadrilateral $APHQ$ is cyclic. Suppose the circumcircles of triangles $APF$ and $AQE$ meet again at $X\neq A$. Prove that $AX$ is parallel to $BC$. Proposed by Ivan Chan Kai Chin