Problem

Source: SRMO 2005

Tags: geometry, circumcircle, trigonometry, power of a point, radical axis, similar triangles, geometry proposed



Assume $A,B,C$ are three collinear points that $B \in [AC]$. Suppose $AA'$ and $BB'$ are to parrallel lines that $A'$, $B'$ and $C$ are not collinear. Suppose $O_1$ is circumcenter of circle passing through $A$, $A'$ and $C$. Also $O_2$ is circumcenter of circle passing through $B$, $B'$ and $C$. If area of $A'CB'$ is equal to area of $O_1CO_2$, then find all possible values for $\angle CAA'$